Buy Tantalum Capacitor
A tantalum electrolytic capacitor is an electrolytic capacitor, a passive component of electronic circuits. It consists of a pellet of porous tantalum metal as an anode, covered by an insulating oxide layer that forms the dielectric, surrounded by liquid or solid electrolyte as a cathode. Because of its very thin and relatively high permittivity dielectric layer, the tantalum capacitor distinguishes itself from other conventional and electrolytic capacitors in having high capacitance per volume (high volumetric efficiency) and lower weight.
buy tantalum capacitor
Download File: https://www.google.com/url?q=https%3A%2F%2Fjinyurl.com%2F2udBMq&sa=D&sntz=1&usg=AOvVaw284RiFduyhIW-hXLJdipPr
Tantalum capacitors are inherently polarized components. Reverse voltage can destroy the capacitor. Non-polar or bipolar tantalum capacitors are made by effectively connecting two polarized capacitors in series, with the anodes oriented in opposite directions.
Electrolytic capacitors use a chemical feature of some special metals, historically called valve metals, which can form an insulating oxide layer. Applying a positive voltage to the tantalum anode material in an electrolytic bath forms an oxide barrier layer with a thickness proportional to the applied voltage. This oxide layer serves as the dielectric in an electrolytic capacitor. The properties of this oxide layer compared with niobium oxide layer are given in the following table:
After forming a dielectric oxide on the rough anode structures, a cathode is needed. An electrolyte acts as the cathode of electrolytic capacitors. There are many different electrolytes in use. Generally, the electrolytes will be distinguished into two species, non-solid and solid electrolytes. Non-solid electrolytes are a liquid medium whose conductivity is ionic.The oxide layer may be destroyed if the polarity of the applied voltage is reversed.
Every electrolytic capacitor in principle forms a plate capacitor whose capacitance is greater the larger the electrode area, A, and the permittivity, ε, are and the thinner the thickness, d, of the dielectric is.
The dielectric thickness of electrolytic capacitors is very thin, in the range of nanometers per volt. Despite this, the dielectric strengths of these oxide layers are quite high. Thus, tantalum capacitors can achieve a high volumetric capacitance compared to other capacitor types.
All etched or sintered anodes have a much larger total surface area compared to a smooth surface of the same overall dimensions. This surface area increase boosts the capacitance value by a factor of up to 200 (depending on the rated voltage) for solid tantalum electrolytic capacitors.[2]
The volume of an electrolytic capacitor is defined by the product of capacitance and voltage, the so-called CV-volume. However, in comparing the permittivities of different oxide materials, it is seen that tantalum pentoxide has an approximately 3 times higher permittivity than aluminum oxide. Tantalum electrolytic capacitors of a given CV value can therefore be smaller than aluminum electrolytic capacitors.
A typical tantalum capacitor is a chip capacitor and consists of tantalum powder pressed and sintered into a pellet as the anode of the capacitor, with the oxide layer of tantalum pentoxide as a dielectric, and a solid manganese dioxide electrolyte as the cathode.
Tantalum capacitors are manufactured from a powder of relatively pure elemental tantalum metal.[3][4][5] A common figure of merit for comparing volumetric efficiency of powders is expressed in capacitance (C, usually in μF) times volts (V) per gram (g). Since the mid-1980s, manufactured tantalum powders have exhibited around a ten-fold improvement in CV/g values (from approximately 20k to 200k).[2] The typical particle size is between 2 and 10 μm. Figure 1 shows powders of successively finer grain, resulting in greater surface area per unit volume. Note the very great difference in particle size between the powders.
The powder is compressed around a tantalum wire (known as the riser wire) to form a "pellet".[6] The riser wire ultimately becomes the anode connection to the capacitor. This pellet/wire combination is subsequently vacuum sintered at high temperature (typically 1200 to 1800 C) which produces a mechanically strong pellet and drives off many impurities within the powder. During sintering, the powder takes on a sponge-like structure, with all the particles interconnected into a monolithic spatial lattice. This structure is of predictable mechanical strength and density, but is also highly porous, producing a large internal surface area (see Figure 2).
Larger surface areas produce higher capacitance; thus high CV/g powders, which have lower average particle sizes, are used for low voltage, high capacitance parts. By choosing the correct powder type and sintering temperature, a specific capacitance or voltage rating can be achieved. For example, a 220 μF 6 V capacitor will have a surface area close to 346 cm2, or 80% of the size of a sheet of paper (US Letter, 8.511 inch paper has area 413 cm2), although the total volume of the pellet is only about 0.0016 cm3.
The dielectric is then formed over all the tantalum particle surfaces by the electrochemical process of anodization. To achieve this, the "pellet" is submerged into a very weak solution of acid and DC voltage is applied. The total dielectric thickness is determined by the final voltage applied during the forming process. Initially the power supply is kept in a constant current mode until the correct voltage (i.e. dielectric thickness) has been reached; it then holds this voltage and the current decays to close to zero to provide a uniform thickness throughout the device and production lot.The chemical equations describing the dielectric formation process at the anode are as follows:[5]
The oxide forms on the surface of the tantalum, but it also grows into the material. For each unit thickness of oxide growth, one third grows out and two thirds grows in. Due to the limits of oxide growth, there is a limit on the maximum voltage rating of tantalum oxide for each of the presently available tantalum powders (see Figure 3).
The dielectric layer thickness generated by the forming voltage is directly proportional to the voltage proof of electrolytic capacitors.[7] Electrolytic capacitors are manufactured with a safety margin in oxide layer thickness, which is the ratio between voltage used for electrolytical creation of dielectric and rated voltage of the capacitor, to ensure reliable functionality.
The safety margin for solid tantalum capacitors with manganese dioxide electrolyte is typically between 2 and 4. That means that for a 25 V tantalum capacitor with a safety margin of 4 the dielectric voltage proof can withstand 100 V to provide a more robust dielectric.[8] This very high safety factor is substantiated by the failure mechanism of solid tantalum capacitors, "field crystallization".[9][10][11][12][13]For tantalum capacitors with solid polymer electrolyte the safety margin is much lower, typically around 2.[12][14]
The next stage for solid tantalum capacitors is the application of the cathode plate (wet tantalum capacitors use a liquid electrolyte as a cathode in conjunction with their casing). This is achieved by pyrolysis of manganese nitrate into manganese dioxide. The "pellet" is dipped into an aqueous solution of nitrate and then baked in an oven at approximately 250 C to produce the dioxide coat. The chemical equation is:[5]
More than 90% of all tantalum electrolytic capacitors are manufactured in SMD style as tantalum chip capacitors. It has contact surfaces on the end faces of the case and is manufactured in different sizes, typically following the EIA-535-BAAC standard. The different sizes can also be identified by case code letters. For some case sizes (A to E), which have been manufactured for many decades, the dimensions and case coding over all manufactures are still largely the same. However, new developments in tantalum electrolytic capacitors such as the multi-anode technique to reduce the ESR or the "face down" technique to reduce the inductance have led to a much wider range of chip sizes and their case codes. These departures from EIA standards mean devices from different manufacturers are no longer always uniform.
The main feature of modern non-solid (wet) tantalum electrolytic capacitors is their energy density compared with that of solid tantalum and wet aluminum electrolytic capacitors within the same temperature range. Due to their self-healing properties (the non-solid electrolyte can deliver oxygen to form new oxide layer in weak areas of the dielectric), the dielectric thickness can be formed with much lower safety margins and consequently with much thinner dielectric than for solid types, resulting in a higher CV value per volume unit. Additionally, wet tantalum capacitors are able to operate at voltages in excess of 100 V up to 630 V, have a relatively low ESR, and have the lowest leakage current of all electrolytic capacitors.
The original wet tantalum capacitors developed in the 1930s were axial capacitors, having a wound cell consisting of a tantalum anode and foil cathode separated by a paper stripe soaked with an electrolyte, mounted in a silver case and non-hermetic elastomer sealed.[16] Because of the inertness and stability of the tantalum dielectric oxide layer against strong acids, the wet tantalum capacitors could use sulfuric acid as an electrolyte, thus providing them with a relatively low ESR.
Because in the past, silver casings had problems with silver migration and whiskers which led to increasing leakage currents and short circuits, new styles of wet tantalum capacitors use a sintered tantalum pellet cell and a gelled sulfuric acid electrolyte mounted in a pure tantalum case.
Due to their relatively high price, wet tantalum electrolytic capacitors have few consumer applications. They are used in ruggedized industrial applications, such as in probes for oil exploration. Types with military approvals can provide the extended capacitance and voltage ratings, along with the high quality levels required for avionics, military, and space applications. 041b061a72